
MongoDB is an open-source, high-performance,
document-oriented database.

Documents are JSON-like data structures stored in a format called
BSON (bsonspec.org). Documents are stored in collections, each of
which resides in its own database. Collections can be thought of as
the equivalent of a table in an RDBMS. There are no fixed schemas in
MongoDB, so documents with different “shapes” can be stored in the
same collection.

MongoDB features full index support (including secondary and
compound indexes); indexes are specified per collection. There is a rich,
document-based query language (see reverse) that leverages these
indexes. MongoDB also provides sophisticated atomic update modifiers
(see reverse) to keep code contention-free.

Clustered setups are supported, including easy replication for high
availability, as well as auto-sharding for write-scaling and large
data-set sizes.

Learn

Support

Community

Social

Careers

Contact

In-browser tutorial try.mongodb.org
Downloads mongodb.org/downloads
Presentations 10gen.com/presentations
Getting Started, Projects, Collections mongly.com

User forum groups.google.com/group/mongodb-user
IRC irc://irc.freenode.net/#mongodb
Bug tracking jira.mongodb.org
Commercial Support 10gen.com/support

Twitter follow @mongodb and @10gen
Facebook www.facebook.com/mongodb
LinkedIn linkd.in/mongodb_group

MongoDB User Groups (MUGs) 10gen.com/user-groups
MongoDB Conferences 10gen.com/events

MongoDB jobs board jobs.mongodb.org

Contact 10gen 10gen.com/contact

Resources

Queries and What They Match

The following queries cannot use indexes as of MongoDB v2.0. These query forms should
normally be accompanied by at least one other query term which does use an index:

Docs where a is 10, or an array containing the value 10.

Docs where a is 10 and b is “hello.”

Docs where a is greater than 10. Also $lt (<), $gte (>=),
$lte (<=), and $ne (!=).

Docs where a is either 10 or “hello.”

Docs where a is an array containing both 10 and “hello”.

Docs where a is an embedded document with b equal to 10.

Docs where a is an array containing a single item with both
b equal to 1 and c equal to 2.

Docs where a is 1 or b is 2.

Docs where a begins with the letter “m”.

{a: 10}

{a: 10, b: “hello”}

{a: {$gt: 10}}

{a: {$in: [10, “hello”]}}

{a: {$all: [10, “hello”]}}

{“a.b”: 10}

{a: {$elemMatch: {b: 1, c: 2}}}

{$or: [{a: 1}, {b: 2}]}

db.foo.find({a: /̂ m/})

Docs where a is anything but 10 or “hello.”

Docs where a mod 10 is 1.

Docs where a is an array with exactly 3 elements.

Docs containing an a field.

Docs where a is a string (see bsonspec.org for more types).

Docs where a matches the regular expression “foo.*bar”.

Docs where a is not a string. $not negates any of the other
query operators.

{a: {$nin: [10, “hello”]}}

{a: {$mod: [10, 1]}}

{a: {$size: 3}}

{a: {$exists: true}}

{a: {$type: 2}}

{a: /foo.*bar/}

{a: {$not: {$type: 2}}}

Update Modifiers

Increment a by 2.

Set a to the value 5.

Delete the a key.

Append the value 1 to the array a.

Append both 1 and 2 to the array a.

Append the value 1 to the array a (if it doesn’t already exist).

Append both 1 and 2 to the array a (if they don’t already exist).

Remove the last element from the array a.

Remove the first element from the array a.

Remove all occurrences of 5 from the array a.

Remove all occurrences of 5 or 6 from the array a.

{$inc: {a: 2}}

{$set: {a: 5}}

{$unset: {a: 1}}

{$push: {a: 1}}

{$pushAll: {a: [1, 2]}}

{$addToSet: {a: 1}}

{$addToSet: {a: {$each: [1, 2]}}}

{$pop: {a: 1}}

{$pop: {a: -1}}

{$pull: {a: 5}}

{$pullAll: {a: [5, 6]}}

Commands

What are Commands?
Commands are special MongoDB operations. Most MongoDB client libraries provide a
helper for running commands. For example, here’s how to run the dropDatabase command
from the shell:

> db.runCommand({dropDatabase:1});

Some commands are admin-only, and must be run on the admin database. In the list below, those
commands are marked with an asterisk (*).

Available Commands
To get a list of all available commands, run db.listCommands() from the MongoDB shell.

Some of the most frequently used commands are listed below:

Get version number and other build information
about the MongoDB server.

Get stats about collection coll. Sizes are in bytes by
default but may be scaled by the provided scaling
factor.

Get the number of documents in collection coll that
match the (optional) specified query.

Get stats about the current database.

Get a list of distinct values for key in coll for all
documents that match the (optional) specified query.

Delete collection coll.

Drop the current database.

Drop the index with key pattern {y:1} in collection
coll. Use index: * to drop all indexes in coll.

Get the status of the last operation on this
connection.

Check if this server is a primary/master server.

Get a list of available commands.

*{buildinfo: 1}

{collStats: coll[, scale: 1]}

{count: coll[, query: query]}

{dbStats: 1}

{distinct: coll, key: key[, query:
query]}

{drop: coll}

{dropDatabase: 1}

{dropIndexes: coll, index: {y: 1}}

{getLastError: ...}

{isMaster: 1}

{listCommands: 1}

Get a list of databases on this server.

Set the database profiler to a given profiling level
(0=disabled, 1=slow queries, 2=all queries).

Re-index collection coll.

Rename collection a to b.

Repair and compact the current database.

Get the status of a replica set.

Get a list of administrative statistics about the server.

Shut down the MongoDB server.

Get a breakdown of usage by collection.

Validate the documents in the specified namespace
(collection or index).

*{listDatabases: 1}

{profile: n}

{reIndex: coll}

*{renameCollection: a, to: b}

{repairDatabase: 1}

{replSetGetStatus: 1}

 {serverStatus: 1}

*{shutdown: 1}

*{top: 1}

{validate: ns}

Commands: Available Commands (cont’d)

Indexing

Index Creation
db.coll.ensureIndex(key_pattern, options)

Create an index on collection coll with the given key pattern and options.

Indexing Key Patterns with Sample Queries

Simple index.

Compound index with name ascending and last_
login descending. Note that key order on compound
indexes matters.

Geospatial index, where coord is a coordinate (x,y)
where -180 < x, y < 180. Note that $near queries
return the closest points to the given coordinate.

{username: 1}
Ex: db.users.find({username: ‘smith’});

{last_name: 1, last_login: -1}
Ex: db.users.find({last_name:

‘jones’}}).sort({last_login: -1})

{coord: ‘2d’}
Ex: db.places.find({coord: {$near:

[50, 50]}})

Index Creation Options

Create a unique index. To check insertion failures,
you must use your driver’s safe mode.

Use with the unique option. Drop documents with
duplicate values for the given key pattern on index
creation.

Create this index in the background; useful when
you need to minimize index creation performance
impact.

Create entries in the index only for documents
having the index key.

Specify a custom name for this index. If not
specified, the name will be derived from the key
pattern.

{unique: true}

{dropDups: true}

{background: true}

{sparse: true}

{name: ‘foo’}

Indexing (cont’d)

Examples

Create a unique index on username.

Create a compound index on category and price
and build it in the background.

Create a geospatial index on loc.

db.users.ensureIndex({username: 1},
{unique: true})

db.products.ensureIndex({category:
1, price: -1}, {background: true})

db.places.ensureIndex({loc: ‘2d’})

Administration

Get a list of all indexes on the users collection.

Directly query the collection containing index
definitions for this database.

Get the number of bytes allocated by indexes for the
users collection.

Get database stats, including total index size for
current database.

Rebuild all indexes on this collection.

Drop the index with key pattern {x: 1, y: -1}. Use
db.users.dropIndexes() to drop all indexes on the
users collection.

db.users.getIndexes()

db.system.indexes.find()

db.users.totalIndexSize()

db.stats()

db.users.reIndex()

db.users.dropIndex({x: 1, y: -1})

Tips
You can use a compound index on {username: 1, date: 1} for the following queries:
db.users.find({username: "Jones"});

db.users.find({username: /̂ Jones/});

db.users.find({username: "Jones", date: "2010-12-01"});

db.users.find({username: "Jones"}).sort({date: -1});

db.users.find({}).sort({username: 1, date: 1}).limit(100);

Note that with this index, a separate single-key index on {username: 1} is unnecessary.

Replication

About Replication
MongoDB enables sophisticated replication, with automated failover, as a configuration
of servers known as a replica set. A replica set consists of a single master node, called
the primary, and one or more slave nodes, called secondaries. If the primary becomes
unreachable, the replica set will attempt to elect one of the secondary nodes as the new
primary. A majority of servers must be able to reach the primary, both to elect it and to
keep it a primary.

If you have only two servers and you want one server to be elected primary if the other
goes offline, then you must also run an arbiter node on a third server. Arbiter nodes do not
store a replica of the set’s data; they exist solely to participate in elections. Therefore, these
nodes can easily reside on an application server.

What is a Majority?
If your set consists of...
1 server, 1 server is a majority.

2 servers, 2 servers are a majority.

3 servers, 2 servers are a majority.

4 servers, 3 servers are a majority.

...

Setup
To initialize a three-node replica set with one arbiter, start three mongod instances, each using
the --replSet flag followed by a name for the replica set. For example:

mongod --replSet cluster-foo

Next, connect to one of the mongods and run the following:

rs.initiate()

rs.add("host2:27017")

rs.add("host3:27017", {arbiterOnly: true})

Replication: Setup (cont’d)

Tips
•	 Run at least one member with journaling enabled to ensure that you always have a clean

copy of your data available.

•	 Start replica set members with the --rest option to enable the web interface.

Members will be elected primary in order of priority,
if possible. n=0 means this member will never be a
primary.

This member will always be a secondary and will lag
n seconds behind the master.

This member will be an arbiter.

Do not show this member in isMaster output.
Use this option to hide this member from clients.

Member location description.
See http://www.mongodb.org/display/DOCS/Data+Center+Awareness.

priority: n

slaveDelay: n

arbiterOnly: true

hidden: true

tags: [...]

rs.status()

rs.conf()

rs.reconfig(newConfig)

rs.isMaster()

rs.stepDown(n)

rs.freeze(n)

Shell Helpers
Create a new replica set with one member.

Add a member.

Remove a member.

rs.initiate()

rs.add("host:port")

rs.remove("host:port")

See the status of each member.

See the current set configuration.

Change the set configuration.

See which member is primary.

Force the primary to become a secondary for n
seconds.

Prevent a secondary from becoming the primary for
n seconds (n=0 means unfreeze).

Administration

The second argument to rs.add() may also contain the following:

MongoDB Monitoring Service (MMS) is a free, cloud-based monitoring and alerting
solution for MongoDB deployments that offers the ability to proactively monitor your
production system. MMS allows you to track performance, utilization, availability and
response times all from a centralized dashboard. The service also supports monitoring ad-
vanced deployments such as those that use replication, sharding or that are hosted across
multiple data centers. MMS requires minimal setup and configuration and within minutes
your devops and sysadmin teams can manage and optimize your MongoDB deployment.

Register at mms.10gen.com.

What is MMS?

MMS is enabled by installing a light-
weight agent in the server environment.
From there, the MMS agent automati-
cally discovers all MongoDB nodes in the
cluster and then reports on metrics such
as memory usage, ops per second, open
connections, CPU load, and I/O activity.
The web interface displays the status of
each MongoDB instance, as well as histori-
cal graphs for all metrics. You can create
custom dashboards, perform side-by-side
data comparisons, and review cluster
behavior at a wide variety of timescales.

How MMS Works
All metrics are transmitted by the
agent to the MMS servers over SSL
(128-bit encryption). The monitoring
agent is a Python script, and you’re
free to examine its source code.
By default, only server metrics are
recorded, and collection of hardware
and application data is entirely op-
tional. Naturally, the web interface is
secured over SSL, and extensive data
access controls and audits are in place
to ensure the safety of your data.

Security

MMS can be used with all varieties of
MongoDB deployments, hosted on physical
hardware or in the cloud. Installing the
monitoring agent is quick and simple, and
meaningful results are available through
the web interface in minutes. A monitoring
solution you’re sure to find useful, you can
sign up for MMS now at mms.10gen.com.

Installation

“MMS adds enormous value to 10gen’s support capabilities. After adding MMS to our clus-
ter, 10gen’s engineers detected an anomaly in our production deployment and proactively
reached out to us to fix the problem before it became a production incident. We didn’t
even have to file a ticket. This gives us great confidence in 10gen’s ability to support us
going forward and demonstrates 10gen’s commitment in partnering with Monster to
ensure success.”
—Ray Howell, Vice President of Architecture at Monster.com

“MMS helps us manage the complexity inherent in large scale online gaming. Behind every
online game is a complex distributed system that’s much more complicated than a stand-
alone game. 10gen has already figured out what we need to monitor and made it really
easy for us to be confident with our infrastructure.”
—Matt Levy, Architect at Playfirst

mongoDB.org 10gen.com

MongoDB, Mongo, and the leaf logo are registered trademarks of 10gen, Inc.

