
The Antepenultimate CouchDB Reference Card
{ "compiled-by" : "Jan-Piet Mens", "on" : "2010-05-11", "_rev" : "15-b3d3ec5ec1ceae407a20a7ae4b8f5da6" }

CouchDB

Apache CouchDB (couchdb.apache.org) is a document-
oriented database that provides a RESTful JSON API which
can be access from any client that speaks HTTP. CouchDB
can be queried and indexed in a MapReduce fashion us-
ing JavaScript, and it offers incremental replication with bi-
directional conflict detection and resolution.

JSON

JSON (JavaScript Object Notation) is a lightweight data-interchange format, easy for hu-
mans to read and write and easy for machines to parse and generate. It is based on a sub-
set of the JavaScript Programming Language. (json.org). The following file jj.json
contains an example:

{ "_id" : "jane", unique doc id
"_rev" : "18-2f990995d34d1f1fc65544bc6411420b", revision
"surname" : "Jolie"
"active" : true,
"hobbies" : ["dance", "music", "books"],
"height" : 168 }

CouchDB documents all have an _id field which is unique, and a _rev field containing
a documents last revision. (In the examples below, revision numbers are truncated for
brevity.) The _id can be any string and is often a UUID, whereas the revision number
changes on each update to the document.

Curl

curl, a command-line tool for transferring data (curl.haxx.se), is excellent for exper-
imenting with CouchDB. Use curl’s -X switch to specify one of the methods (GET, PUT,
DELETE, COPY, POST – default is GET) to describe the desired action to be performed on
a resource. In this document we show a portion of the URL only for brevity. So, when we
specify say, /db/doc, we typically mean something like this:

curl -s http://127.0.0.1:5984/db/doc silent
curl -v http://user:password@127.0.0.1:5984/db/doc verbose

curl expects data after the -d option, either as single string on the command line (ensuring
the shell doesn’t interpret its content) or from a file such as jj.json above. For example,
to create a CouchDB document as in the above example, use either of the following:

curl -X PUT http://127.0.0.1:5984/db/jane -d @jj.json data from file
curl -X PUT http://127.0.0.1:5984/db/jane -d ’{"name":"Jane",\ data right here

"surname":"Jolie","height":168, ...}’

Database operations

The commands in this section deal with CouchDB databases as a whole, i.e. creating,
querying information, and deleting them.

list databases GET /_all_dbs
["rep1","db","names"]

create database PUT /db lowercase only

destroy database DELETE /db

database information GET /db
{

"compact_running" : false,
"doc_count" : 793,
"db_name" : "jsconf",
"purge_seq" : 0,
"doc_del_count" : 0,
"disk_format_version" : 5,
"update_seq" : 793,
"instance_start_time" : "1271509153975346",
"disk_size" : 5771364

}

change notifications GET /db/_changes
&style=main_only default
&style=all_docs more rev info

changes since seq GET /db/_changes?since=87
&timeout=milliseconds default 60s

changes: long polling GET /db/_changes?feed=longpoll

changes: continuous feed GET /db/_changes?feed=continuous
&heartbeat=milliseconds keep alive

Document operations

list all documents GET /db/_all_docs
&descending=true change sort order
&limit=3 limit count
&include_docs=true full documents

get single document GET /db/doc
&revs=true show revisions
&rev=nnnnn get revision

fetch documents by keys POST /db/_all_docs \ keys are
-d ’{"keys":["jane","jkp"]}’ document ids

create document with id PUT /db/88 -d ’{"name":"Jane"}’ id part of URI
{"ok":true,"id":"88","rev":"1-c289"}

create document POST /db -d ’{"name":"Jesse"}’ doc’s id generated
{"ok":true,"id":"bd4b48f65792a45224ad406ff00013f4",

"rev":"1-a3ea"}

copy document COPY /db/88 -H "Destination: jane"
{"id":"jane","rev":"1-c2890"}

update document PUT /db/doc requires _rev
PUT /db/88 -d ’{"name":"JanE", "_rev":"1-c289"}’
{"ok":true,"id":"88","rev":"2-a524"}

delete document DELETE /db/doc requires _rev
DELETE /db/88?rev=2-a524

bulk operations CouchDB provides a bulk insert/update feature. To use
this, you make a POST request to the URI /_bulk_docs,
with the request body being a JSON document containing
a list of new documents to be inserted or updated. Con-
sider the following JSON file bulk.json:

{
"all_or_nothing":false,
"docs": [

{"_id": "annie", "name": "Annie"},
{ "name": "Suzie"},

]
}

We now POST this data to CouchDB. Documents without
an explicit _id get one generated by CouchDB.

POST /db/_bulk_docs -d @bulk.json
[output reformatted
{ "id":"annie", "rev":"1-581f",}
{ "id":"bd4b...5a","rev":"1-3be6" }, generated id
]

To update existing documents, include the _rev field
to the current document’s revision, and to delete docu-
ments in bulk include both the revision and a boolean
_deleted set true. Individual updates may fail (e.g. be-
cause they don’t pass validation), but you can get an all-
or-nothing transaction-like feeling by adding a boolean
"all_or_nothing":true field alongside the docs ar-
ray.

add attachment PUT /db/doc/image.jpg?rev=1-c289 \ requires _rev
-H ’Content-Type: image/jpeg’ \
--data-binary @filename.jpg

inline attachments Add any number of inline attachments to the document
when PUTting it into the database using the document’s
_attachments field.

$ cat person.json
{ "name" : "Jo",

"_attachments" : {
"portrait.jpg" : {

"content_type" : "image/jpeg",
"data" : "..." base64, no white

space
},
"payroll.txt" : {

"content_type" : "text/plain",
"data" : "..." base64, no white

space
} } }

list attachments GET /db/doc
{

"_id" : "doc",
...
"_attachments" : {

"image.jpg" : {
"revpos" : 2,
"length" : 14102,
"content_type" : "image/jpeg",
"stub" : true

}
}

}

This is just the metadata (stub=true). Get the base64 en-
coded data using the ?attachments=true option.

retrieve attachments GET /db/doc/image.jpg

delete attachment DELETE /db/doc/attachmentname?rev=... requires _rev

2

Validation

As documents written to disk, they can be validated dynamically by JavaScript functions.
When the document passes all the formula validation criteria, the update is allowed to
continue, otherwise the update is aborted and the client gets an error response. Both
the user’s credentials and the updated document are given as inputs to the validation
formula, and can be used to implement custom security models by validating a user’s
permissions to update a document. There is function one per design document, but there
can be many design documents, in which case the validation functions are invoked in an
undefined order. Add an attribute validate_doc_update containing the validation
function.

{
 "_id": "_design/aa",
 "validate_doc_update": "function(newDoc,oldDoc,userCtx) {...}"
}

function(newDoc, oldDoc, userCtx) {
if (!newDoc.type) {

throw {"forbidden":"Documents need a type."};
}

}

Update handlers

These 1 allow updating a database document without the usual GET-modify-POST cycle.
The handler is passed the server’s current version of the document.

function(doc, req) {
var field = req.query.field;
doc[field] = req.query.value;
doc.countr = (doc.countr) ? doc.countr + 1 : 1;
return [doc, "Thanks."];

}

PUT /db/_design/app/_update/setfield/doc?field=name&value=JP
Thanks.

Views

Views are the method of aggregating and reporting on the documents in a CouchDB
database, and they are built on-demand. Views are built dynamically and don’t affect the
underlying documents; you can have as many different view representations of the same
data as you like. View definitions are strictly virtual and only display the documents
from the current database instance, making them separate from the data they display
and compatible with replication. CouchDB views are defined in design documents and
can replicate like regular documents.

Map/Reduce

A map function takes a single document as input, and returns an array of key/value
pairs as output, whereby an empty array is possible. For a given input, the map function
must produce the same output, so the result can’t vary according to the time of day, or
any other factor. Map functions in CouchDB use the emit() function to send each of the
key-value pairs that make up the array back to the server.
A reduce function takes an array as input, and it returns a single value (which may be
a complex type such as an array or hash) as output. Depending on the amount of data
CouchDB has to process, the reduce operation could be broken up into smaller chunks by
the server. When this happens, the reduce function is invoked with rereduce set to false.
The reduce function’s results are then amassed by CouchDB, and the reduce function is
finally called with rereduce set to true, with an array of values in values. So, if rereduce is
false, the keys and values arguments are a list of keys/values for each row emitted by map
respectively. If, on the other hand, rereduce is true, keys will be null, and the values argu-
ment contains an array of results produced by the previous invocation(s) of the reduce
function. Whew. The reduce function must produce the same result if the input array is
randomly shuffled.

map Get a list of all documents of type card for a view and issue
the name of the card:

function (doc) {
if (doc[’type’] == "card") {

emit(doc.name, 1);
}

}

Output a list of all tags in each document, where tags is a
JSON array such as ["music","books","food"].

function(doc) {
if (doc.tags && doc.tags.length > 0) {

for (var i = 0; i < doc.tags.length; i++) {
emit(doc.tags[i], 1);

}
}

}

map/reduce Determine which and how many documents have attach-
ments. (Use this view with ?group= – see below.)

function(doc) { map
if (doc._attachments) {
emit("with file", 1);
} else {
emit("no files", 1);
}

}
function(keys, values) { reduce

1http://wiki.apache.org/couchdb/Document_Update_Handlers

3

return sum(values);
}

query view definition GET /db/_design/viewname

query view information GET /db/_design/viewname/_info

query view content GET /db/_design/myv/_view/cards
{"total_rows":2,"offset":0,"rows":[
{"id":"jane","key":"Jane","value":1},
...
]}

querying options GET .../cards?key=’"Jane"’ quotes! valid JSON
?startkey=’"Jo%20Guest"’
?endkey=...
?limit=nnn
?descending=true
?skip=4
?group=true red. to distinct keys
?include_docs=true

temporary views One-off queries (use for development only) can be POSTed
to the special _temp_view. For example, to log (to the
couch.log file) a list of all documents:

POST /db/_temp_view \
-d ’{"map":"function(doc){log(doc);}"}’

Shows

Use show functions to output data in any way. These functions are stored in your design
document, under the shows key.

{
 "_id": "_design/myv",
 "shows": {
 "hello": "function(doc,req) { return 'hello world';}",
 "name": "function(doc,req) { if (doc) { return doc.surname; }}",
 "rq": "function(doc,req) { return 'NAME=' + req.query.name;}"
 }
}

simple show GET /db/_design/myv/_show/hello
hello world

show with document id GET /db/_design/myv/_show/name/jane
Jolie

show with parameters GET /db/_design/myv/_show/rq
NAME=undefined
GET /db/_design/myv/_show/rq?name=Somebody
NAME=Somebody

Lists

List functions are a mechanism for iterating over rows in a view to produce output.
CouchDB list functions are typically used to generate alternate formats for output (RSS,
XML, HTML, etc.).

{
 "_id": "_design/myv",
 "lists": {
 "foo": "function(head,req) {
 var row;
 while (row = getRow()) {
 send('Name='+row.key + '\\012');
 }
 }"
 }
}

list GET /db/_design/myv/_list/listname/viewname
GET /db/_design/myv/_list/foo/cards
Name=Jane
Name=Jo

list options GET ... _list/foo/cards?key=’"Jane"’ quotes!
?descending=true
?startkey=...
?limit=10

Replication

Replication in CouchDB is a one-off operation where you send an HTTP request to
CouchDB that includes a source and a target database that are to be replicated. CouchDB
sends changes from the source to the target and replication is thus complete. Both source
and target are either simple database names (e.g. db) or URLs to remote CouchDB
databases.

one-off replication POST /_replicate -d \
’{"source":"http://example.com/abook", \

"target":"mydb"}’
{
"ok" : true, Yeah!
"history" : [truncated
{
"docs_read" : 10,
"doc_write_failures" : 0,
"start_time" : "Tue, 20 Apr 2010 10:17:01 GMT",
"docs_written" : 10,
...

}

4

continuous replication Add a boolean element "continuous":true to the re-
quest shown above to specify that you want CouchDB
to initiate continous replication (Note that at the time of
this writing continous replication does not pick up after a
server restart)

create target Since version 0.11 CouchDB can automatically cre-
ate the target database. In order to do so, add a
"create_target":true to the replication request.

individual documents Since 0.11 you can specify a list of document ids to be
replicated from the source to the target, useful when you
want only a subset of documents replicated (e.g. design
only). Documents deleted on the source are not replicated.

POST /_replicate \
-d ’{"source":"http://example.de:5984/db1",\

"target":"dbhere",\
"doc_ids":["u235","wgx","jane"]}’

filters In 0.11 you can specify a filter for the _changes feed used
by the replicator.

POST /_replicate \
-d ’{"source":"http://example.de:5984/db1",\

"target":"dbhere",\
"filter":"myv/avatar"}’

The filter is a function contained in the specified design
document2:

function(doc, req) {
if (doc.type == ’avatar’) {

return true;
}
return false;

}

Status

welcome GET /
{"couchdb":"Welcome","version":"0.11.0"}

configuration data GET /_config

statistics GET /_stats

active tasks GET /_active_tasks

UUIDs GET /_uuids?count=1
{"uuids":["bd4b48f65792a45224ad406ff0002647"]}

Utilities

compact database POST /db/_compact
POST /db/_compact/designname

Compaction compresses the database file (or the views) by
removing unused sections created during updates. Old re-
visions of documents are also removed from the database
though a small amount of meta data is kept for use in con-
flict replication during replication.

view cleanup POST /db/_view_cleanup

When you change a view, old indexes remain on disk. To
clean up all outdated view indexes (files named after the
MD5 representation of views, that does not exist anymore)
you can trigger a view cleanup.

Rewriting

The _rewrite URL endpoint on your design documents lets you rewrite any incoming
request to a regular CouchDB API URL. The rewrite target in the to attribute is relative
to the design document it is in. rewriting root is the design document. Here is an array
with two rewriting rules in it:

{
 "_id": "_design/myv",
 "rewrites": [
 { "from": "/hola",
 "to": "/_show/hello" },
 { "from": "show/:id",
 "to": "_show/name/:id" }
]
}

will cause all requests for /db/_design/myv/_rewrite/asdf to be directed to
/db/_design/myv/_show/jp, and requests for .../_rewrite/show/999 to go to
.../_show/mydoc/999.

2More information at http://mens.de/:/52
3http://github.com/couchapp/couchapp/

5

CouchApp

CouchApp3 is a system for deploying applications into a CouchDB database: "CouchApp
is a set of scripts and a jQuery plugin designed to bring clarity and order to the freedom of
CouchDB’s document-based approach. However, it can also be use it to deploy views, shows,
lists, etc. into a database. Start off by creating an application using couchapp generate
skel. Set up a .couchapprc file in your skel directory containing the URL to your
database:

{ "env":{ "default":{ "db":"http://example.de:5984/db" } } }

You can push this structure into your CouchDB by running couchapp push from within
your skel directory.

views, shows, lists Functions are easily edited as dir/func.js where dir
represents a directory named shows, views, etc. and func
is the name of a show, view, list, etc.

preload documents You can also "preload" your CouchDB database with doc-
uments (inline attachments and all) by creating each as a
.json file and dropping them into a _docs directory in
your skel/; these are pushed into the database as well.

More relaxation...

The Guide The title says it all. This is the CouchDB book in its entirety, although
I do recommend you get the printed version to read on your couch.
http://books.couchdb.org/relax/

Resty Resty is a tiny script wrapper for curl which provides a simple,
concise shell interface for interacting with REST services. It is im-
plemented as functions in your own shell. You can use Resty in
pipelines to process data from REST services, and PUT or POST the
data right back. You can even pipe the data in and then edit it in-
teractively in your text editor prior to PUT or POST. Highly recom-
mended. http://github.com/micha/resty (I’ve made a small
screencat of Resty at http://mens.de/:/53)

pudo Pudo reads a directory containing JSON or YAML files and up-
loads their content as JSON documents to a CouchDB. If a match-
ing doc.attachments directory is found, all contained files are at-
tached to the document. http://github.com/jpmens/pudo

This document (http://mens.de/:/couchdbref) is c©2010 Jan-Piet Mens – licensed under the terms of the
Creative Commons Attribution-Share Alike 3.0 License.

6

