
Erich’s Java cheat sheet for C++ programmers

c©Erich Kaltofen
kaltofen@math.ncsu.edu

October 7, 2002

C++ Java
assignment operator= cannot be user-defined for a class and performs

assignment of a reference to the instance of the
class (see also reference types)

basic_string String and StringBuffer

bool boolean

char byte

const variables/data members final variables/fields
copy constructor no default; one implements the interface

Cloneable by the method Object clone(),
which can be an abstract (in C++ notion: virtual)
method

data members fields, so-called instance variables (a term bor-
rowed from Smalltalk)

delete does not exist; all unreferenced memory is
garbage collected

derived classes subclasses; the keyword extends replaces C++’s
colon.

destructors ~Class protected void finalize(); note, however,
that these are used for freeing resources other
than memory and are therefore rarely needed

exceptions, try, catch, throw, std:exception same concept; Java adds a keyword throws

that is used to declare the exceptions a method
throws; the hierarchy of exceptions is rooted in
java.lang.Exception; a finally block is in-
troduced to contain all common clean-up code.

extern "C" functions native methods
functions do not exist; static methods (“class methods”)

are used
#include does not exist; the paths to the files are known and

can be made know in the CLASSPATH environment
variable

1



C++ Java
input/output: istream& operator>>, ostream&
operator<<

System.in and System.out are the streams;
Java has number formatting tools in java.lang.

Number and java.text.Format.NumberFormat
main(int argc, char* argv[]) public static void main(String []

args) within a public class
member functions methods
multiple inheritance does not exist; however, interfaces provide a weak

form of multiple inheritance.
namespaces packages
namespace Namespace{...} packagePackage; which must appear as the first

line in the file
nested (member, inner) classes Java 1.1 has static (“top-level”) and non-static

(“member”) inner classes, as well as local classes
and anonymous classes. Member classes can re-
fer to the members of the outer class and to Out-
erClass.this; they cannot have the name of an
outer class and cannot declare static members.

new Class(...) new Class(...), which returns a reference to the
created object

NULL (the 0 pointer value) and the type void* null in Java is a keyword and represents an unini-
tialized reference

overloaded operators do not exist; however, methods can be overloaded.
This may be a major shortcoming of Java, as one
cannot revise old Java code by redefining the op-
erators used (cf. MITMatlab)

passing arguments to base class constructor place the statement super(...); as the first state-
ment in the subclass’s constructor

public, private, protected modifiers similar as in C++; visibility of classes and nested
classes can be also restricted; there are no friends,
but within the same package protected members
are visible

reference types Type& all Java types except scalar primitive types are ref-
erence types; note that the method
void swap(T a, T b) {T t; t = a; a = b;

b = t;}

does nothing to its arguments.
scope resolution, operator :: does not exist; methods must be defined in-

side the class declaration. If a base class mem-
ber is to be explicitly referred, one uses type-
casting: ((Baseclass)Variable).Member; a di-
rect base class member can be referred to by
super.Member

2



C++ Java
static data members static fields, so-called class variables; they are

accessed by Class.Field rather than the C++ Vari-
able.Member; they can be initialized by =...;
within the class definition and need not be de-
clared outside like C++ static data members.

static member functions static methods, so-called class methods; they
are defined within the class declaration, unlike in
C++.

this this, which is a reference to the object and has
the type of the class, not a pointer; note that the
call this(...); as the first statement in a con-
structor invokes a constructor call for the match-
ing argument types.

traits marker interfaces
type_id instanceof; this is an operator returning a

boolean, not a “type_info” as in C++.
using namespace Package; import Package.*;
virtual member functions abstract methods; the enclosing class must also

be declared abstract

wchar_t char

wide character stream wostream PrintWriter replaces PrintStream that cannot
hold unicode; the constructor of PrintStream

has been deprecated in Java 1.1, but System.out
is not.

Java concepts missing in C++
abstract windows toolkit AWT standard library for building a GUI
concatenation of strings by + operator
documentation comments can be processed (e.g., by javadoc) for automatic

online documentation
final methods those cannot be overridden by a subclass
interfaces are used to denote abstract classes without any

method of their own. They can have static

final fields. One class can implement several in-
terfaces, but it must implement the abstract meth-
ods of each interface.

reflection allows the inspection of a class (which arguments
does which member take? etc.); this is critical for
plug-and-play design, such as a Java bean

right shift operator with zero extension <<<

serialization C++ requires the programmer to implement object
serialization member functions

sockets
threads

3



C++ concepts missing in Java
const member functions do not exist; final methods cannot be overridden

by subclasses
friend classes, functions do not exist; however, protected members are

visible within the same package
goto is a reserved work in Java, but is not supported

by the language; however break and continue

statements can give a statement label
multiple inheritance virtual base classes seem unachievable by using

interfaces
new(Pointer) Type(...); Pointer->~Type(); this is C++’s explicit memory allocation mech-

anism. In Java, all memory is managed by the
VM and garbage collection is automatic. Thus,
in C++, a garbage collector can be implemented,
while in Java a memory manager cannot.¶

pointer types Type* do not exist; actually, since Java has only refer-
ence types, all variables are some kind of pointers
and the = operator behaves like a pointer assign-
ment

pointer to function, member not a serious restriction, as one may encapsulate a
function in a function object

standard template library STL java.util.Vector provides an expandable vec-
tor. Java 1.2 provides Collections, which are
essentially C++ STL containers, but many of the
members are renamed. Note that List is a scrol-
lable list in the AWT. There are third-party vendor
container packages: See http://reality.

sgi.com/austern mti/java/index.html,
http://www.objectspace.com/developers/

jgl/downloads/index.html§

templates there is a the GJ compiler http://www.cs.

bell-labs.com/~wadler/pizza/gj/.§ C++’s
template expansion mechanism is a full-fledged
programming language and has been used for
compiler optimization task (e.g., in the Blitz++
matrix library)

typedef asside as a shorthand, typedefs can be encapsu-
lated in a class scope to provide a generic type;
they function as assignments in template meta-
programming.

¶Laurent Bernardin points out that this isn’t exactly true: place all objects on arrays/lists for reuse
§These references were provided by Thierry Gautier

4


