
PHP-FIG PSR Standards Cheat Sheet

by Dave Child (DaveChild) via cheatography.com/1/cs/1743/

Useful Links

O�cial Site http://www.php-�g.org

Accepted Standards

PSR-0 Autoloading Standard

http://www.php-�g.org/psr/psr-0/

PSR-1 Basic Coding Standard

http://www.php-�g.org/psr/psr-1/

PSR-2 Coding Style Guide

http://www.php-�g.org/psr/psr-2/

PSR-3 Logger Interface

http://www.php-�g.org/psr/psr-4/

PSR-0 - Overview

A fully-quali�ed namespace and class must

have the following structure \<Vendor

Name>\(<Namespace>\)*<Class

Name>

Each namespace must have a top-level

namespace ("Vendor Name").

Each namespace can have as many

sub-namespaces as it wishes.

Each namespace separator is converted to

a DIRECTORY_SEPARATOR when

loading from the �le system.

Each _ character in the CLASS NAME is

converted to a

DIRECTORY_SEPARATOR. The _

character has no special meaning in the

namespace.

The fully-quali�ed namespace and class is

su�xed with .php when loading from the

�le system.

Alphabetic characters in vendor names,

namespaces, and class names may be of

any combination of lower case and upper

case.

PSR-1 - Overview

Files MUST use only <?php and <?=

tags.

Files MUST use only UTF-8 without BOM

for PHP code.

Files SHOULD either declare symbols

(classes, functions, constants, etc.) or

cause side-e�ects (e.g. generate output,

change .ini settings, etc.) but SHOULD

NOT do both.

Namespaces and classes MUST follow

PSR-0.

Class names MUST be declared in

StudlyCaps.

Class constants MUST be declared in all

upper case with underscore separators.

Method names MUST be declared in

camelCase.

PSR-2 - Overview

Code MUST follow PSR-1.

Code MUST use 4 spaces for indenting,

not tabs.

There MUST NOT be a hard limit on line

length; the soft limit MUST be 120

characters; lines SHOULD be 80

characters or less.

There MUST be one blank line after the

namespace declaration, and there MUST

be one blank line after the block of use

declarations.

Opening braces for classes MUST go on

the next line, and closing braces MUST go

on the next line after the body.

Opening braces for methods MUST go on

the next line, and closing braces MUST go

on the next line after the body.

Visibility MUST be declared on all

properties and methods; abstract and �nal

MUST be declared before the visibility;

static MUST be declared after the

visibility.

Control structure keywords MUST have

one space after them; method and

function calls MUST NOT.

Opening braces for control structures

MUST go on the same line, and closing

braces MUST go on the next line after the

body.

Opening parentheses for control structures

MUST NOT have a space after them, and

closing parentheses for control structures

MUST NOT have a space before.

Cheatographer

Dave Child (DaveChild)

cheatography.com/davechild

www.addedbytes.com

Cheat Sheet

Published 21st February, 2014.

Updated 21st February, 2014.

Page 1 of 4.

Sponsor

Measure your website readability!

www.readability-score.com

PHP-FIG PSR Standards Cheat Sheet

by Dave Child (DaveChild) via cheatography.com/1/cs/1743/

PSR-2 - General

Code MUST follow all rules outlined in

PSR-1.

All PHP �les MUST use the Unix LF

(linefeed) line ending.

All PHP �les MUST end with a single

blank line.

The closing ?> tag MUST be omitted

from �les containing only PHP.

There MUST NOT be a hard limit on line

length.

The soft limit on line length MUST be 120

characters; automated style checkers

MUST warn but MUST NOT error at the

soft limit.

Lines SHOULD NOT be longer than 80

characters; lines longer than that SHOULD

be split into multiple subsequent lines of

no more than 80 characters each.

There MUST NOT be trailing whitespace

at the end of non-blank lines.

Blank lines MAY be added to improve

readability and to indicate related blocks

of code.

There MUST NOT be more than one

statement per line.

Code MUST use an indent of 4 spaces,

and MUST NOT use tabs for indenting.

PHP keywords MUST be in lower case.

The PHP constants true, false, and null

MUST be in lower case.

PSR-2 - Namespace and Use

Declarations

When present, there MUST be one blank

line after the namespace declaration.

When present, all use declarations MUST

go after the namespace declaration.

There MUST be one use keyword per

declaration.

There MUST be one blank line after the

use block.

PSR-2 - Classes, Properties, and

Methods

The extends and implements keywords

MUST be declared on the same line as the

class name.

The opening brace for the class MUST go

on its own line; the closing brace for the

class MUST go on the next line after the

body.

Lists of implements MAY be split across

multiple lines, where each subsequent line

is indented once. When doing so, the �rst

item in the list MUST be on the next line,

and there MUST be only one interface per

line.

Visibility MUST be declared on all

properties.

The var keyword MUST NOT be used to

declare a property.

There MUST NOT be more than one

property declared per statement.

Property names SHOULD NOT be

pre�xed with a single underscore to

indicate protected or private visibility.

Visibility MUST be declared on all

methods.

Method names SHOULD NOT be pre�xed

with a single underscore to indicate

protected or private visibility.

Method names MUST NOT be declared

with a space after the method name.

The opening brace of a method MUST go

on its own line, and the closing brace

MUST go on the next line following the

body.

There MUST NOT be a space after the

opening parenthesis of a method, and

there MUST NOT be a space before the

closing parenthesis.

PSR-2 - Classes, Properties, and

Methods (cont)

In the argument list, there MUST NOT be

a space before each comma, and there

MUST be one space after each comma.

Method arguments with default values

MUST go at the end of the argument list.

Argument lists MAY be split across

multiple lines, where each subsequent line

is indented once. When doing so, the �rst

item in the list MUST be on the next line,

and there MUST be only one argument

per line.

When the argument list is split across

multiple lines, the closing parenthesis and

opening brace MUST be placed together

on their own line with one space between

them.

When present, the abstract and �nal

declarations MUST precede the visibility

declaration.

When present, the static declaration

MUST come after the visibility declaration.

When making a method or function call,

there MUST NOT be a space between the

method or function name and the opening

parenthesis, there MUST NOT be a space

after the opening parenthesis, and there

MUST NOT be a space before the closing

parenthesis.

In the argument list, there MUST NOT be

a space before each comma, and there

MUST be one space after each comma.

Cheatographer

Dave Child (DaveChild)

cheatography.com/davechild

www.addedbytes.com

Cheat Sheet

Published 21st February, 2014.

Updated 21st February, 2014.

Page 2 of 4.

Sponsor

Measure your website readability!

www.readability-score.com

PHP-FIG PSR Standards Cheat Sheet

by Dave Child (DaveChild) via cheatography.com/1/cs/1743/

PSR-2 - Control Structures

There MUST be one space after the

control structure keyword

There MUST NOT be a space after the

opening parenthesis

There MUST NOT be a space before the

closing parenthesis

There MUST be one space between the

closing parenthesis and the opening brace

The structure body MUST be indented

once

The closing brace MUST be on the next

line after the body

The body of each structure MUST be

enclosed by braces.

The keyword elseif SHOULD be used

instead of else if.

The case statement MUST be indented

once from switch, and the break keyword

(or other terminating keyword) MUST be

indented at the same level as the case

body.

There MUST be a comment such as // no

break when fall-through is intentional in a

non-empty case body.

PSR-2 - Closures

Closures MUST be declared with a space

after the function keyword, and a space

before and after the use keyword.

The opening brace MUST go on the same

line, and the closing brace MUST go on

the next line following the body.

There MUST NOT be a space after the

opening parenthesis of the argument list or

variable list, and there MUST NOT be a

space before the closing parenthesis of the

argument list or variable list.

In the argument list and variable list, there

MUST NOT be a space before each

comma, and there MUST be one space

after each comma.

Closure arguments with default values

MUST go at the end of the argument list.

Argument lists and variable lists MAY be

split across multiple lines, where each

subsequent line is indented once. When

doing so, the �rst item in the list MUST

be on the next line, and there MUST be

only one argument or variable per line.

When the ending list (whether or

arguments or variables) is split across

multiple lines, the closing parenthesis and

opening brace MUST be placed together

on their own line with one space between

them.

PSR-3 - Log Levels (RFC 5424)

debug error

info critical

notice alert

warning emergency

PSR-3 - Basics

The LoggerInterface exposes eight

methods matching log level names (see

Log Levels block)

A ninth method, log, accepts a log level as

�rst argument. Calling this method with

one of the log level constants MUST have

the same result as calling the level-speci�c

method.

Calling the log method with a level not

de�ned by this speci�cation MUST throw

a Psr\Log\InvalidArgumentException if

the implementation does not know about

the level.

Users SHOULD NOT use a custom level

without knowing for sure the current

implementation supports it.

PSR-3 - Message

Every method accepts a string as the

message, or an object with a __toString()

method.

The message MAY contain placeholders

which implementors MAY replace with

values from the context array.

Placeholder names MUST correspond to

keys in the context array.

Placeholder names MUST be delimited

with a single opening brace { and a single

closing brace }. There MUST NOT be any

whitespace between the delimiters and the

placeholder name.

Placeholder names SHOULD be composed

only of the characters A-Z, a-z, 0-9,

underscore _, and period .. The use of

other characters is reserved for future

modi�cations of the placeholders

speci�cation.

Implementors MAY use placeholders to

implement various escaping strategies and

translate logs for display. Users SHOULD

NOT pre-escape placeholder values since

they can not know in which context the

data will be displayed.

Cheatographer

Dave Child (DaveChild)

cheatography.com/davechild

www.addedbytes.com

Cheat Sheet

Published 21st February, 2014.

Updated 21st February, 2014.

Page 3 of 4.

Sponsor

Measure your website readability!

www.readability-score.com

PHP-FIG PSR Standards Cheat Sheet

by Dave Child (DaveChild) via cheatography.com/1/cs/1743/

PSR-3 - Context

Every method accepts an array as context

data. This is meant to hold any extraneous

information that does not �t well in a

string. The array can contain anything.

Implementors MUST ensure they treat

context data with as much lenience as

possible.

A given value in the context MUST NOT

throw an exception nor raise any php error,

warning or notice.

If an Exception object is passed in the

context data, it MUST be in the

'exception' key.

Logging exceptions is a common pattern

and this allows implementors to extract a

stack trace from the exception when the

log backend supports it.

Implementors MUST still verify that the

'exception' key is actually an Exception

before using it as such, as it MAY contain

anything.

PSR-3 - Helper Classes and Interfaces

The Psr\Log\AbstractLogger class lets you

implement the LoggerInterface very easily

by extending it and implementing the

generic log method. The other eight

methods are forwarding the message and

context to it.

The Psr\Log\LoggerTrait only requires

you to implement the generic log method.

Note that since traits can not implement

interfaces, in this case you still have to

implement LoggerInterface.

The Psr\Log\NullLogger is provided

together with the interface. It MAY be

used by users of the interface to provide a

fall-back "black hole" implementation if no

logger is given to them. However

conditional logging may be a better

approach if context data creation is

expensive.

The Psr\Log\LoggerAwareInterface only

contains a setLogger(LoggerInterface

$logger) method and can be used by

frameworks to auto-wire arbitrary instances

with a logger.

The Psr\Log\LoggerAwareTrait trait can

be used to implement the equivalent

interface easily in any class. It gives you

access to $this->logger.

The Psr\Log\LogLevel class holds

constants for the eight log levels.

Cheatographer

Dave Child (DaveChild)

cheatography.com/davechild

www.addedbytes.com

Cheat Sheet

Published 21st February, 2014.

Updated 21st February, 2014.

Page 4 of 4.

Sponsor

Measure your website readability!

www.readability-score.com

