
This work is licensed under the Creative
Commons Attribution-NonCommercial-
NoDerivs 2.0 License. To view a copy
of this license, visit http://creativecom-
mons.org/licenses/by-nc-nd/2.0/uk

Cheatsheet • Errors

www.dizzy.co.uk/cheatsheets

Default error messages

Write methods

Read methods These error messages are stored in a Rails class
variable, @@default_error_messages and
can be changed or added to as follows:
 ActiveRecord::Errors.default_er-
ror_messages[:blank] = "Your custom
message here"

These default error messages are used by
Rails' built in validation class methods and
some of the Errors write methods such as add_
on_blank. You may find it useful to change
them if, for example, you require your error
messages in a different language.
:inclusion "is not included in

the list"

:exclusion "is reserved"

:invalid "is invalid"

:confirmation "doesn't match confir-
mation"

:accepted "must be accepted"

:empty "can't be empty"

:blank "can't be blank"

:too_long "is too long (maximum
is %d characters)"

:too_short "is too short (maximum
is %d characters)"

:wrong_length "is the wrong length
(should be %d char-
acters)"

:taken "has already been taken

:not_a_number "is not a number

:greater_than "must be greater than
%d"

:greater_than_or_
equal_to

"must be greater than
or equal to %d"

:equal_to "must be equal to %d"

:less_than "must be less than %d"

:less_than_or_equal_
to

"must be less than or
equal to %d"

:odd "must be odd"

:even "must be even"

add (� attribute, msg = @@default_error_
messages[:invalid])
Adds an error message msg to the at-
tribute, which will be returned on a call to
on(attribute) for the same attribute and
ensure that this error object returns false
when asked if empty?. More than one error
can be added to the same attribute in which
case an array will be returned on a call to
on(attribute). If no msg is supplied, "in-
valid" is assumed.

add_on_blank � ([attributes], msg = @@default_er-
ror_messages[:blank])
Will add an error message to each of the
attributes in [attributes] that is blank (for
example, an empty string).

add_on_empty � (attributes, msg = @@default_er-
ror_messages[:empty])
Will add an error message to each of the at-
tributes in attributes that is empty.

add_to_base � (attributes, msg = @@default_er-
ror_messages[:empty])
Adds an error to the base object instead of
any particular attribute. This is used to report
errors that don't tie to any specific attribute,
but rather to the object as a whole. These er-
ror messages don't get prepended with any
field name when iterating with each_full,
so they should be complete sentences.

clear �
Removes all the errors that have been added
to the object.

count �
Alias for size

each �
Yields each attribute and associated message per error
added.
class Company < ActiveRecord::Base
 validates_presence_of :name, :address, :email
 validates_length_of :name, :in => 5..30
end
company = Company.create(:address => '123 First
St.')
company.errors.each{|attr,msg| puts "#{attr} -
#{msg}" }
 # => name - is too short (minimum is 5 charac-
ters)
 # => name - can't be blank
 # => address - can't be blank

each_full �
Yields each full error message added. So Person.er-
rors.add("first_name", "can‘t be empty") will
be returned through iteration as "First name can‘t
be empty".
 class Company < ActiveRecord::Base
 validates_presence_of :name, :address, :email
 validates_length_of :name, :in => 5..30
 end
 company = Company.create(:address => '123 First
St.')
 company.errors.each_full{|msg| puts msg }
 # => Name is too short (minimum is 5 charac-
ters)
 # => Name can't be blank
 # => Address can't be blank

full_messages �
Returns all the full error messages in an array.
 class Company < ActiveRecord::Base
 validates_presence_of :name, :address, :email
 validates_length_of :name, :in => 5..30
 end
 company = Company.create(:address => '123 First
St.')
 company.errors.full_messages
 # => ["Name is too short (minimum is 5 char-
acters)", "Name can't be blank", "Address can't
be blank"]

empty? �
Returns true if no errors have been added.

length �
Alias for size

on �
Returns nil, if no errors are associated with the speci-
fied attribute. Returns the error message, if one error is
associated with the specified attribute. Returns an array
of error messages, if more than one error is associated
with the specified attribute.
 class Company < ActiveRecord::Base
 validates_presence_of :name, :address, :email
 validates_length_of :name, :in => 5..30
 end
 company = Company.create(:address => '123 First
St.')
 company.errors.on()
 # => ["is too short (minimum is 5 charac-
ters)", "can't be blank"]
 company.errors.on(:email)
 # => "can't be blank"
 company.errors.on(:address) # => nil
This method is also aliased as the shortcut []

on_base �
Returns errors that have been assigned to the base
object through add_to_base according to the normal
rules of on(attribute).

invalid? � (attribute)
Returns true if the specified attribute has errors associ-
ated with it.
 class Company < ActiveRecord::Base
 validates_presence_of :name, :address, :email
 validates_length_of :name, :in => 5..30
 end
 company = Company.create(:address => '123 First
St.')
 company.errors.invalid?(:name) # => true
 company.errors.invalid?(:address) # => false

size �
Returns the total number of errors added. Two errors
added to the same attribute will be counted as such.

to_xml � (options={})
Returns an XML representation of this error object.

[] � (attribute)
Alias for on method...
company.errors[:email]

View Helpers
error_message_on �

(object, attribute, prepend_text = "", append_text = "", css_class =
"formError")
Returns a string containing the error message attached to
the attribute of the object if one exists. This error message
is wrapped in a <div> tag, which can be extended to in-
clude a prepend_text and/or append_text (to properly
explain the error), and a css_class to style it accordingly.
Object should either be the name of an instance variable
or the actual object itself. As an example, let's say you
have a model @post that has an error message on the
title attribute:
 <%= error_message_on "post", "title" %>
 # => <div class="formError">can't be empty</div>
 <%= error_message_on @post, "title" %>
 # => <div class="formError">can't be empty</div>
 <%= error_message_on "post", "title", "Title sim-
ply ", " (or it won't work).", "inputError" %>
 # => <div class="inputError">Title simply can't
be empty (or it won't work).</div>

object the name of an @instance_variable or the
actual object

attribute the attribute you wish to check for errors
prepend_text text to be prepended to the error message

append_text text to be appended to the error message
css_class CSS class of the <div> which will wrap the

error message

error_messages_for � ({hash})
Returns a string with a <div> containing all of the error
messages for the objects located as instance variables by
the names given. If more than one object is specified, the
errors for the objects are displayed in the order that the
object names are provided.
This <div> can be tailored by the following options:
:header_tag Used for the header of the error <div>

(default is h2)
:id The class of the error <div> (default is

errorExplanation)
:class The id of the error <div> (default is

errorExplanation)
:object The object (or array of objects) for

which to display errors, if you need to
escape the instance variable conven-
tion

:object_name The object name to use in the header,
or any text that you prefer. If :object_
name is not set, the name of the first
object will be used

:header_message The message in the header of the error
<div>. Pass nil or an empty string to
avoid the header message altogether
(default message is "X errors prohibited
this object from being saved")

:message The explanation message after the
header message and before the error
list. Pass nil or an empty string to
avoid the explanation message alto-
gether (default message is "There were
problems with the following fields:")

To specify the display for one object, you simply provide
its name as a parameter. For example, for the @user
model:
 error_messages_for :user

To specify more than one object, you simply list them:
optionally, you can add an extra :object_name parameter,
which will be the name used in the header message:
 error_messages_for :user_common, :user, :ob-
ject_name => :user

If the objects cannot be located as instance variables, you
can add an extra :object paremeter which gives the actual
object (or array of objects to use):
 error_messages_for :user, :object => @question.
user

This is a pre-packaged presentation of the errors with
embedded strings and a certain HTML structure. If what
you need is significantly different from the default presen-
tation, it makes plenty of sense to access the object.errors
instance yourself and set it up.

