
Category Escapes
A category escape matches a character from a set
specified by a property or using a block:

\p indicates match any character in the set.

\P indicates match any character not in the set.

Categories and Properties
Any character can be matched by its properties
using a category escape consisting of a Category
code followed by an optional Property code:

\p{L} Any Letter

\p{Lu} Any Upper-case Letter

\p{Ll} Any Lower-case Letter

\p{Lt} Any Title-case Letter

\p{Lm} Any Letter Modifier

\p{Lo} Any “Other” Letter

\p{M} Any Mark

\p{Mn} Any Non-Spacing Mark

\p{Mc} Any Combining Mark

\p{Me} Any Enclosing Mark

\p{N} Any Digit

\p{Nd} Any Decimal Digit

\p{Nl} Any Letter Digit

\p{No} Any “Other” Digit

\p{P} Any Punctuation Character

\p{Pc} Any Connector Character

\p{Pd} Any Dash Character

\p{Ps} Any Open Character

\p{Pe} Any Close Character

\p{Pi} Any Initial Quote Character

\p{Pf} Any Final Quote Character

\p{Po} Any “Other” Punctuation

\p{Z} Any Separator Character

\p{Zs} Any Space Separator

\p{Zl} Any Line Separator

\p{Zp} Any Paragraph Separator

\p{S} Any Symbol Character

\p{Sm} Any Math Symbol

\p{Sc} Any Currency Symbol

\p{Sk} Any Modifier Symbol

\p{So} Any “Other” Symbol

\p{C} Any “Other” Character

\p{Cc} Any Control Character

\p{Cf} Any Format Character

\p{Co} Any Private Use Character

\p{Cn} Any “Not Assigned” Character

Character Blocks
Any character within a Unicode character block
can be matched using a category escape
consisting of “Is” followed by the block‟s name.
For example: \p{IsBasicLatin}

Block
Start

Block
End

Block
Name

0000 007F BasicLatin

0080 00FF Latin-1Supplement

0100 017F LatinExtended-A

0180 024F LatinExtended-B

0250 02AF IPAExtensions

02B0 02FF SpacingModifierLetters

0300 036F CombiningDiacriticalMarks

0370 03FF Greek

0400 04FF Cyrillic

0530 058F Armenian

0590 05FF Hebrew

0600 06FF Arabic

0700 074F Syriac

0780 07BF Thaana

0900 097F Devanagari

0980 09FF Bengali

0A00 0A7F Gurmukhi

0A80 0AFF Gujarati

0B00 0B7F Oriya

0B80 0BFF Tamil

0C00 0C7F Telugu

0C80 0CFF Kannada

0D00 0D7F Malayalam

0D80 0DFF Sinhala

0E00 0E7F Thai

0E80 0EFF Lao

0F00 0FFF Tibetan

1000 109F Myanmar

10A0 10FF Georgian

1100 11FF HangulJamo

1200 137F Ethiopic

13A0 13FF Cherokee

1400 167F

 UnifiedCanadianAboriginalSyllabics

1680 169F Ogham

16A0 16FF Runic

1780 17FF Khmer

1800 18AF Mongolian

1E00 1EFF LatinExtendedAdditional

1F00 1FFF GreekExtended

2000 206F GeneralPunctuation

2070 209F SuperscriptsandSubscripts

20A0 20CF CurrencySymbols

20D0 20FF CombiningMarksforSymbols

2100 214F LetterlikeSymbols

2150 218F NumberForms

Block
Start

Block
End

Block
Name

2190 21FF Arrows

2200 22FF MathematicalOperators

2300 23FF MiscellaneousTechnical

2400 243F ControlPictures

2440 245F OpticalCharacterRecognition

2460 24FF EnclosedAlphanumerics

2500 257F BoxDrawing

2580 259F BlockElements

25A0 25FF GeometricShapes

2600 26FF MiscellaneousSymbols

2700 27BF Dingbats

2800 28FF BraillePatterns

2E80 2EFF CJKRadicalsSupplement

2F00 2FDF KangxiRadicals

2FF0 2FFF

 IdeographicDescriptionCharacters

3000 303F CJKSymbolsandPunctuation

3040 309F Hiragana

30A0 30FF Katakana

3100 312F Bopomofo

3130 318F HangulCompatibilityJamo

3190 319F Kanbun

31A0 31BF BopomofoExtended

3200 32FF EnclosedCJKLettersandMonths

3300 33FF CJKCompatibility

3400 4DB5

 CJKUnifiedIdeographsExtensionA

4E00 9FFF CJKUnifiedIdeographs

A000 A48F YiSyllables

A490 A4CF YiRadicals

AC00 D7A3 HangulSyllables

E000 F8FF PrivateUse

F900 FAFF CJKCompatibilityIdeographs

FB00 FB4F AlphabeticPresentationForms

FB50 FDFF ArabicPresentationForms-A

FE20 FE2F CombiningHalfMarks

FE30 FE4F CJKCompatibilityForms

FE50 FE6F SmallFormVariants

FE70 FEFE ArabicPresentationForms-B

FEFF FEFF Specials

FF00 FFEF HalfwidthandFullwidthForms

FFF0 FFFD Specials

XSLT 2.0:

http://www.w3.org/TR/xslt20/

XQuery 1.0:

http://www.w3.org/TR/xquery/

XPath 2.0:

http://www.w3.org/TR/xpath20/

Unicode:

http://www.unicode.org

Regular Expression Examples

^[A-Za-z]

An Ascii letter at the start of a string or line.

^\p{Lu}

An upper-case Unicode letter at the start of a

string or line.

\.$

A period at the end of a string or line.

\p{IsGreek}+

One or more Greek letters.

\p{IsGreek}{1,}

One or more Greek letters.

.*?;

Up to and including the next semicolon.

.*;

Up to and including the last semicolon.

^\c+$

Match only if the string consists entirely of

XML name characters.

[-~-[\[\]]]+

Any Ascii printable character except the

square brackets.

\w+

A "word".

[^\s]+

Non-white-space characters.

\S+

Non-white-space characters.

(['"])(.*?)\1

A string delimited by single or double quotes.

$2 or regex-group(2) will return the unquoted

substring. (\1 is the quote character used.)

\s*(\i\c*)\s*=\s*(["'])(.*?)\2

An XML-attribute-like name, equal and

quoted value (with optional leading and

intervening white space). $1 is the name and

$3 is the value.

\((\d+|\p{L}+)\)

A parenthesized sequence either of digits or

of letters (but not a mixture of both).

\p{Sc}(\d+(\.\d*)?|\.\d+)

A decimal number with a leading currency

symbol.

Escaping Characters
Characters that have special meaning in regular
expressions need to be escaped if they are to be
represented “as is”. These characters are:

\ | . ? * + () { } [] - ^ $

In addition, the following escapes represent
single characters:

\n newline or line-feed character (
)

\r carriage return character ()

\t tab character ()

Multi-Character Escapes

. (dot) Any Non-Line-End Character

\s Any Space Character

\i Any Initial Name Character

(including „_‟ and „:‟)

\c Any Name Character

(including „.‟, „-„, „_‟ and „:‟)

\d Any Decimal Digit

\w Any “Word” Character (anything other

than Punctuation, Separator or “Other”)

An upper-case multi-character escape matches
any character not described by the lower-case
escape. The upper-case escapes are:

 \S \I \C \D \W

Character Class Expressions
A character class expression matches a single
character. It‟s wrapped in square brackets and
consists of three parts:

1. an optional negation indicator, ^.

2. one or more characters or ranges, and

3. an optional character class subtraction.

If the negation indicator is used, the single
character matched is any character not given
following it or in a given range.

A character range consists of two characters
separated by a dash, as in:

[-a-zA-Z0-9_]

A leading dash (-) is a dash, not a range.

A character class subtraction consists of a dash
followed by a character, category escape or
nested character class expression, as in:

[a-z-[aeiou]]

i.e. Match lower-case letters but not the vowels.

XPath 2.0 and XQuery 1.0 Functions

That Use Regular Expressions

matches(xs:string?, xs:string) as xs:boolean

matches(xs:string?, xs:string, xs:string) as
xs:boolean

replace(xs:string?, xs:string, xs:string) as
xs:string

replace(xs:string?, xs:string, xs:string, xs:string)
as xs:string

tokenize(xs:string?, xs:string) as xs:string*

tokenize(xs:string?, xs:string, xs:string) as
xs:string*

XSLT 2.0 Instructions That Use

Regular Expressions

<xsl:analyze-string select = expression
 regex = { string }
 flags = { string }>
 <xsl:matching-substring>
 sequence-constructor
 </xsl:matching-substring>
 <xsl:non-matching-substring>
 sequence-constructor
 </xsl:non-matching-substring>
 xsl:fallback*
 </xsl:analyze-string>

One but not both of xsl:matching-substring and
xsl:non-matching-substring can be omitted.

Inside xsl:matching-substring, the
regex-group(N) function returns the Nth group
captured by the regular expression.

Regular Expression Matching Flags

Flags are letters used to indicate how Regular
Expression matching is to be done:

s Dot (.) matches any character, line-end
characters included.

m ^ and $ match at the start and end of all
lines, not just the start and end of the
selected string as a whole.

i Match case insensitive.

x Remove white-space (space, tab and line-
end) characters from the regular expression
before using it.

Zero or more flags are specified as a string using
the optional flags= attribute of xsl:analyze-string
or the optional last argument of the matches,
replace and tokenize functions.

2008-07-21

Regular Expressions

in XSLT 2.0,

XQuery 1.0 and

XPath 2.0

Sam Wilmott
sam@wilmott.ca
http://www.wilmott.ca

and

Mulberry Technologies, Inc.
17 West Jefferson Street, Suite 207
Rockville, MD 20850 USA
Phone: +1 301/315-9631
Fax: +1 301/315-8285
info@mulberrytech.com
http://www.mulberrytech.com

© 2007-2008 Sam Wilmott and
Mulberry Technologies, Inc.

Regular Expression Basics

A regular expression is:

oneThing | anotherThing | yetAnother
Match one thing or another or another (one or
more things).

oneThing anotherThing yetAnother
Match one thing followed by another etc. (one
or more things)

atom quantifier
Match atom the number of times indicated by
quantifier; once if quantifier is omitted.

Where atom is any of:

 an unescaped character,

 an escaped character,

 a parenthesized regular expression, or

 a character class expression.

Where quantifier is any of:

? zero or one times (i.e. optional)

* zero or more times

+ one or more times

{N} exactly N times

{N,} N or more times

{N,M} between N and M times inclusive.

An extra trailing ?, as in ??, +? or {N,M}? means
match the shortest possible number of
repetitions rather than the (default) longest.

Line Starts and Ends
A regular expression can be anchored at the start
and/or end of a string using ^ (the start) and $
(the end). If a regular expression is used with
the m flag, ^ and $ match at the start and end of
each line.

In the absence of ^ or $, a regular expression
matches unanchored: anywhere within the string.

Subexpressions and Back References
Each parenthesized group in a regular expression
is assigned a group number counting unescaped
left parentheses starting from the left.

Group numbers can be used in three ways:

1. Within a regular expression, to match what
was matched by a previous subexpression. A
previously matched group is identified by
backslash and a number: \1, \2 etc.

2. Within a replace replacement expression to
match what was matched by a previous
subexpression. A group is identified by a
numeric name: $1, $2 etc. As well, $0
identifies the whole matched substring.

3. within a XSLT regex-group(N) to access the
matched subexpression.

