
C# Language Reference

Hello World class HelloWorld

{
 static void Main()
 {
 System.Console.WriteLine(“Hello World”);
 }
}

Comments // - in line
/* */ - section comment

Namespaces Equivalent to Java packages
using namespace; at start of code to include namespace (not class).
Must include using System for most classes.

Types Value types (eg int) dtored on stack
Reference types (eg String) stored on heap

Built in value types byte, char, bool, sbyte, short, ushort, int, uint, float, double, decimal,
long, ulong.
Can cast automatically or explicitly eg x = (short)y

Variables eg int x = 1; Variables must be initialised before use.

Constants eg const int x =1;

Enumerations Base type defaults to int
eg
public enum Sizes
 {Small=1, Reg=2, Large=3}
Reference as Sizes.Small.
Can leave values out -> default will be 0, 1, 2 …

Strings eg string s = “ABC”

Case C# is case sensitive
use camelNotation for variables (eg int someName)
use PascalNotation for classes/methods (eg SomeMethod)

if .. else if (expr) { } else { }

switch switch (expr)
{ case expr: statement; break or goto;
 default: statement
}
will only fall thru a case statement if it is blank. Does not default to
fallthru without break.
Can switch on string expressions

loops while (expr is true)
 { }
or
 do
 { } while (expr is true)
or
 for (int i=start;i<end;i++)
 { }
or
 foreach (obj x in coll)
 { x.blah(); }

break/continue continue causes execution to return to top and continue
break ceases excution of the loop

Operators Assignment (=)
Arithmetic (+, -, *, /, %(modulus))
Increment (++, +=, +* etc), decrement (--)
Relational (==, !=, >, >=, < , <=)
Conditional(&&, ||, ! -> Note C# will short circuit expressions)
Logical (&, ^, |)
Ternary (cond-expr ? expr1 : expr2)

Preprocessor #define, #if etc
#region name ->#endregion – marks a block of collapsible code

Classes public class Ade:base-class
{ }
Ade a = new Ade();

Access Modifiers public : no restrictions
private : only accessible to class
protected : only accessible to class and subclasses
internal : accessible to any class in assembly
protected internal : == protected or internal

Methods return-type Name(params)
{ }

Constructors Same name as class and no return type. Can have multiple constructors with
different param lists.
Copy constructor must be created manually by passing an object in to a
constructor method.
A static constructor will run before any instance of the class is created

Destructor Should only be used if there are unmanaged resources
Called by garbage collector
~ClassName()
{ }

Dispose Can define a Dispose method – implement interface IDisposable.
Should suppress GC using GC.SuppressFinalize(this);
Called automaticalling in using clauses eg
using (x = new XYZ())
{ } Dispose called automatically.

Within class reference this is the current object
base is the super class object

Static members Belong to and referenced by the class name
Cannot be referenced using an object instance

Params – by
reference/by value

Default is by value for value types
Use (ref int x) to pass by reference
values must be assigned a vlue before use. If not initially assigned then use
out: (out int x)

Overloading methods Must change types or number of parameters – just chaging return type doesn’t
work.

Properties Make instance variables private – access is via properties
public int Xyz
{ get { return Xyz; }
 set { Xyz = value } }
get or set are optional
Can then use property as if it were a normal variable.
eg a.Xyz++

Inheritance To override a base class method
base class must define method as virtual
public virtual void open()
to override it in child class
public override void open()
All methods are final by default.
Helps in versioning, eg add a new method in base class that has already been
declared in a subclass.

If method in subclass is the same as a virtual base method must use new to
indicate it is not an override
eg public new virtual Xyz()
Use sealed keyword to make a class final so it can’t be inherited

Abstract class/method abstract public void Add();
Must be overriden by sub class.
Base class must also be abstract
abstract public class AdeBase { }

System.Object Provides Equals(), GetHashCode(), GetType(), ToString(), Finalize(),
MemberwiseClone(), ReferenceEquals()

Boxing/Unboxing Boxing converts a value type to a reference type and is automatic
eg int I =123; i.ToString();
Unboxing converts from object to a value type – must be explicit
eg int I = 123; Object o = i; int j = (int)o;

Nesting classes Can create private classes within a class. Use internal keyword. Similar to
java static inner classes. If class is defined as public then it must be
referenced using outer class, eg Outer.Inner.blah().

Operator Overloading Defined as static methods, eg for a class Fraction to override +
public static Fraction operator+(Fraction lhs, Fraction rhs) {}
[Convention is to use lhs and rhs]
Not all languages in .NET will support operator overloading and thus will not
use these methods – worth adding separate add() method.
Be careful – make use intuitive.
If overloading ==, must also overload !=, same with >, < etc.
Should also override Equals if overloading ==

Conversion operators Can overload how compiler will convert between types when casting
eg Fraction f = 1.67; myInt = (int)f;
use public static implicit operator Fraction (int theInt) { }

Structs A simple user defined type, a lightweight alternative to a class. Can contain
methods, properties etc. Doesn’t support inheritance. Does support multiple
interfaces. A struct is a value type.
Useful in arrays, but not in collections as boxing is required.
Define similar to class:
public struct Ade
{
 public SomeMethod()
 {}
}
Create using new operator (although do’t have to!).
Ade x = new Ade();

Interfaces Short begine with I
public interface IAde:baseclass
{
 void Read();
 int Status{get; set; }
}
No access modifiers for methods/properties;
Interfaces can also implement other interfaces.

Can cast an object to the interface to use the interface, or use methods
directly:
Document doc = new Document(“ade”);
IAde iaDoc = doc as IAde;
or IAde iaDoc = (IAde)doc;
iaDoc.Read();
doc.Read();

Can test interface using is:
if (doc is IAde) …
The as operator returns null (rather than an error) if cast fails.
In a class implementing the interface, can put interface name as part of
method declaration. Useful if two interfaces have same method name.

If explicit implmentaion then method is only visible when object is cast to
the interface.
eg void IAde.Read() { } [Note – no access modifier]
This allows implemented interface to be hidden if required.

Arrays

Arrays are objects and thus have a stack of methods available eg Copy, Sort,
BinarySearch,
int [] myArray;
myArray = new int[5]; [First element is 0]
Array of value types are value types – not boxed objects.
Button[] myArray = new Button[3];
- does not create objects only null references – stll have create and assign
button objects.
Access element using [index], eg myArray[3]
Multi-dimensional arrays, inc initiliastion
int [,] x = new int[2,2];
Initiliastion
int [,] x = { {1,2}, {3,4} }
Jagged arrays – an array of arrays
int [][] x
Arrays can be converted if type of the arrays can be converted

Params array Can pass in multiple parameters to a method using a params array:
eg void MyMethod(params int[i] intVals)
MyMethod(1,2,3); or MyMethod(myIntArray);

Indexers Allows access to a class as if it were an array.
Effectively overloads the [] operator.
Declare an indexer within a class as:
returnType this [accessType argument] { get; set;}
eg public string this[int i]
{ get { }
 set { }
}
then can access as obj[10] where obj is an instance of the class.
The accessType can be any type does not have to be an int. Can also overload
using different accessTypes (eg an int and a String indexer)

Collection Interfaces Various interfaces that classes can supprt to provide collection
functionality, eg:
IEnumerable: allows support of foreach
ICollection: provide copy, count etc
IComparer: allows collection sorting

Collection Types Array: as above
ArrayList: A dynamicall sized array. Use Add, Remove etc
Queue: fifo collection. Use enqueue, dequeue, peek
Stack: lifo collection. Use pop, push, peek

Dictionaries Associates values with a key. Any kind of object can be associated with any
type of key.
Hashtable: Ietm, Add, Contains, Remove
IDictionary: interface to implement

Strings string x = “abc”; or string x = @”abc”; # says treat string literally (ignore
escape characters)
string intStr = myInt.ToString();
Available methods: eg Copy, Compare, Format, SubString, ToUpper, Trim, Split
(breaks into substrings)
StringBuilder class for dynamically building and processing strings. Methods
available: Append, Insert, Remove, Replace.

Exception Handling throw new System.Exception(“…”);
try { }
catch { } or catch (Exception type) { }
finally { }
System.Exception provides Message(), StackTrace(), InnerException(),
TargetSite()
Custom exceptions must derive from System.ApplicationException
InnerException allows Exception to be saved as part of throwing a new

Exception – these can be nested.
Rethrowing exceptions: throw; or throw Exception;

Delegates and Events A delegate is a reference type used to encapsulate a method with a particular
signature.
public delegate int MyDelegate(params);
Declare a method that uses delegate
public void Sort(MyDelegate delFunc)
{ x = delFunc(params);
 }

XML Documentation Generate XML doc from code using /doc compiler switch
Reads comments marked with ///
Use tags such as <summary>, <returns>, <param>
eg ///<summary>This class does this<summary>

