
08/30/2007 02:33 PMCVS Cheatsheet

Page 1 of 5http://www.slac.stanford.edu/grp/cd/soft/cvs/cvs_cheatsheet.html

ESD Software Engineering Group

CVS Cheat-sheet
SLAC Detailed

SLAC Computing

Software

Software Detailed

CVS

This page outlines some of the common CVS commands as they may be used in the SLAC ESD Software
Group. See the CVS Manual for more, in particular Multiple Developers (chapter 10) and the Guide to CVS
Commands (appendix A).

Contents: checkout, add, commit, update, release, import. Real-world Examples
See Also: How to Undelete a file (see section 6.2 at that URL).

Common CVS Command Summary

cvs checkout The way you reserve files in CVS that you want to edit.

To check out a subdirectory tree, cd to the directory in your working space into which you want cvs to place the directory it
checks out. Use “cvs checkout” giving the name of the directory in the cvs repository you want to checkout, where the name you
give is a directory under CVSROOT, presently $CD_SOFT/cvs (eg app/alh, script). The directory you give, and all subdirectories,
will be placed in your working directory.

cvs checkout [options] modules...

Egs cvs checkout edu Checks out everything under edu, placing an edu
directory, plus all subordinate subdirectories, in
the working dir.

cvs checkout app/alh Checks out everything under app/alh placing an
app directory in your working directory, but only
the alh subdirectory of app.

cvs co
package/aida/common/script/MakefileAida.sun4

Checks out only the single file
MakefileAida.sun4, creating
package/aida/common/script/MakefileAida.sun4
in the working directory, containing that one file.

cvs add Add new files to an existing directory under CVS control.

The cvs add command tells CVS to add the given file to its list of files that should be tracked in the working directory. The file is
not created in the repository until you CVS commit the file or the directory it's in. The file must be in the local directory when
you cvs add it; that is, you can’t cp and cvs add with one command by giving a full pathname of the file. To add a whole new
directory hierarchy to the source repository (for example, files received from a third-party vendor), use the cvs import command
instead. See CVS Manual section A.12 import--Import sources into CVS, using vendor branches.

cvs add [-k kflag] [-m message] files ...
Egs cvs add myfile.c Schedule myfile.c to be added to the repository

cvs commit Put your changes in CVS

The commit command is used to place the changes you made to files in your local working directory back into the CVS

08/30/2007 02:33 PMCVS Cheatsheet

Page 2 of 5http://www.slac.stanford.edu/grp/cd/soft/cvs/cvs_cheatsheet.html

repository. Note that it is usually a good idea to run cvs update on your checked out files before running the cvs commit, so that
cvs can alert you to possible conflicts between your changes and changes that may have been made to the repository since you did
your cvs checkout. See CVS Manual “Bringing a file Up to Date”.

 cvs commit [-lnRf] [-m 'log_message' | -F file] [-r revision] [files...]
Egs cvs commit Commit everything from the working directory

down.
cvs commit –m "add test suite"
package/aida/common/script/MakefileAida.sun4

Commit only the file given, and give the
comment in the command line rather than start
an editor.

cvs update Bring a checkout up to date with the repository

The cvs update command is used to merge changes that have been made to a repository into files that have been checked out.
Note that it is reverse operation from the one we normally do on VMS, we only ever merge changes made from a checkout into
the CMS repository. Since in cvs the norm is to checkout whole directory trees, cvs update is the way you find out if anyone has
checked stuff in on to of you. In particular its a good idea to run cvs update on your checked out files before running the cvs
commit. See CVS Manual “Bringing a file Up to Date”.

 cvs update [-ACdflPpR] [-I name] [-j rev [-j rev]] [-k kflag] [-r tag|-D date]
[-W spec] files...

Egs cvs update –dA package/aida/common/script Bring working dir specified up to date with the
repository (merge changes made to the
repository into the local files).

cvs update –A
package/aida/common/script/MakefileAida.sun4

Bring just the named file up-to-date with the
repository

cvs release To relinquish your interest in a branch of the repository

The release command is used only to tell cvs you are no longer interested in the part of the repository you checked out. CVS
release will alert you to whether you have left any modified files in your local working directory, and then confirm the release. If
you confirm, it will make a note in the history file. Note, the CVS release command is not used to put files into the repository like
the phonetically similar CMS replace.

 cvs release [-d] directories...
Egs cvs release package/aida/common/script Tell CVS that you’re no longer interested in

package/aida/common/script.
cvs release –d package/aida/common/script Tell CVS that you’re no longer interested in

package/aida/common/script.and tell cvs to
delete your working copy of this directory
tree.

cvs import The way you create a new directory or tree of directories in CVS.

You use a cvs import command when you want to add a whole directory to CVS. CVS import is not used to add a bunch of files
to an existing directory - for that use "cvs add" (see above). Before getting into the command itself, first pick a place in the
existing cvs tree where you want to add your stuff. For this example, let's say you wanted to add a directory of "tool" files to cvs
at the new directory "common/tool", so its reference directory would be $CD_SOFT/ref/common/tool/. The argument you would
have to give to the cvs import command will be "common/tool". The argument is always the full pathname, after the
$CD_SOFT/cvs part, of the root of the directory you want to create, even if some of the intermediate directories already exist (in
this case, "common/" already exists).
cvs import always imports all the files, and all subdirectories, in the working directory from which it is being run. That is, it
imports a directory tree into the place specified by the argumetk. So, be careful not to do something like cd to a directory which

08/30/2007 02:33 PMCVS Cheatsheet

Page 3 of 5http://www.slac.stanford.edu/grp/cd/soft/cvs/cvs_cheatsheet.html

contains the root of a directory tree which you want to import and then issue cvs import giving as the argument the leaf-of-
directory-tree you want to import, e.g. cd ~/work (containing common/tool) and then cvs import common/to.ol. That would create
$CD_SOFT/cvs/common/tool/common/tool/!! If you only want to import a single directory, then the root and the leaf are the
same directory, so you can use a sequence of commands as in example 1) below. But if you really want to import more than one
directory, you have to use a sequence like that in example 2.

Also be careful not to import a directory system that contains a subdirectory that is itself the result of a CVS checkout, because
that subdirectory will contain a CVS subdirectory. This is very messy to clean up. You shouldn't ever want to anyway, because
cvs import must always be run from the directory whose files you want to import, and always takes the fully qualified cvs module
name as the argument.

The two other arguments to cvs import are the "vendor tag", and the "release" tag:

 "vendor tag" is a free form text string you're supposed to use to identify the vendor of software. Since it's a CVS tag, it
should be all upper case and not have any special charatcters save the "_" (like no "." or "-"). Our standard for this tag is
"CD_SOFT", when we're the vendors.
 "release tag", is also a free form text string you're supposed to use to identify the release of the software you're putting in
CVS. For EPICS software, we use a release tag like "R3_13_6", for all other software, for the initial release, we use
"R1_0".

After you have done the cvs import, be sure to go to the corresponding reference area and do the initial cvs checkout.

Eg cvs import [options] directory-name vendor-tag release-tag

1 cd ~/work/common/tool

cvs import common/tool CD_SOFT R1_0

cd $CD_SOFT/ref
cvs checkout common/tool

Say ~/work/common/tool is the directory
where all the tool files are. All the files in
that directory will be imported (unless
they're in the CVSIGNORE set).
Imports all the files from your working
directory, into cvs/common/tool.
Creates the initial checkout of the directory
you just created in cvs.

2 cd ~/work

cvs import app/myapp CD_SOFT R1_0

cd $CD_SOFT/ref
cvs checkout app/myapp

Say ~/work is the root directory of where all
the files are of a new application are. All the
files and all the subdirectories in that
directory will be imported into
cvs/app/myapp (unless they're in the
CVSIGNORE set).

Imports all the files from ~/work, into
cvs/app/myapp.

3 cvs import -m "initial import" ... app/myapp
CD_SOFT R1_0

As above, but gave a comment on the
command line rather than making cvs start
an editor and asking for the comment
interactively.

Real-world examples

Modifying a single file in a single directory

In this example we modify a single makefile in the AIDA script area. It is checked out, modified, and checked back in.

cd tmp Move to the directory in which
you want to work

cvs co package/aida/common/script/MakefileAida.sun4 Cvs checkout the file you want
to work with

cd package/aida/common/script Change dir to dir of

08/30/2007 02:33 PMCVS Cheatsheet

Page 4 of 5http://www.slac.stanford.edu/grp/cd/soft/cvs/cvs_cheatsheet.html

Emacs MakefileAida.sun4 & Edit file
cd ../../../.. Go back up to issue cvs update

and commit, so the filename on
which to act is the same as when
it was checked out.

cvs update -A package/aida/common/script/MakefileAida.sun4 Verify that no-one has modified
the file in the repository since
you checked it out. CVS should
reply simply “M” meaning you
have modified the file.

cvs commit package/aida/common/script/MakefileAida.sun4 Update the repository with your
modified file.

cvs release package/aida/common/script Relinquish interest
rm –r package Delete local package dir and all

sub-dirs.

Modifying an entire “package”

In this example we checkout a whole sub-tree, add a file copied in from elsewhere, modify it and another file, and check in the
whole directory tree. The sub-tree used for illustration is that containing Aida, but this may be any sub-tree in the CD_SOFT
repository.

cd tmp
cvs co package/aida Checkout Aida

(cvs/package/aida and all
subordinate directories)

cd package/aida/common/script Change dir to where you want to
do some work

cp /afs/slac/package/aida/common/script/aidapackagelist.txt
.

Copy a new file to be added to
CVS into the checked out area.

cvs add aidapackagelist.txt Tell CVS about the file you
want to add

emacs aidapackagelist.txt Modify the added file
emacs MakefileAida.sun4 Modify another file that was

already in this directory
cd ../../../.. Go back up to the directory from

which the checkout was made,
in order to do the update
verification and commit.

cvs update –dA package/aida Merge in updates that other
developers have done to your
local copy of package/aida.

cvs commit Update the CVS repository with
your changes

<gmake aida> Make aida. If it builds clean go
on to the next step, if it doesn’t
you can keep cvs committing
modified versions from the local
directory and re-updating the
reference area until it does.

cvs release package/aida Finally, when the reference area
is rebuilt, relinquish
package/aida.

rm –r package Clean-up local workspace.

08/30/2007 02:33 PMCVS Cheatsheet

Page 5 of 5http://www.slac.stanford.edu/grp/cd/soft/cvs/cvs_cheatsheet.html

ESD SoftwareEngineering | SLACComputing | SLACDetailed Home
EPICS atSLAC | PEPIIControls | NLC DevControls

Owner: Greg White
Last modified: Monday 12-Jan, 2004. Ron MacKenzie. Removed directions that said to update the reference
area. That is now done automatically for you. 28-Mar-2005, Greg White:Clarify cvs import command help, or
at least give more help.

