Collection Functions

each (list, iter, [con])
iter: function(element, index, list)

forEach

map (list, iter, [con])

_.map([1, 2, 3], function(x){return x*2;})
12, 4, 6]

reduce (list, iter, m, [con])
iter: function(memo, el), m: memo
_.reduce([2, 3], function(m, i) {return m+i;}, 0) ~ 6

inject, foldl

reduceRight (list, iter, m, [con])
Similar to reduce, but works in opposite direction.

foldr

detect (list, iter, [con])

Returns the first found value that passes a truth
test (/ter).

select (list, iter, [con]) filter
_.select([1, 2, 3], function(x) {return x<3;})
[, 2]
reject (list, iter, [con])
Opposite of select.
all (iist, iter, [con]) every

Returns true if all of the values in the list pass the
iter truth test.

any (list, iter, [con]) some

Returns true if any of the values in the list pass the
jter truth test.

contains (list, value) include
Returns true if the value is present in the list. ===

invoke (list, methodName, [*args])

Calls the method named by methodName on each
value in the list with passed arguments (if any).

pluck (list, propertyName)
Extracting a list of property values.
_pluck(lik: 1}, {k: 231, ') — [1, 2]

max (list, [iter], [con])

min (list, [iter], [con])

sortBy (list, iter, [con])

Returns a sorted copy of list, ranked by the results
of running each value through iterator.

groupBY (list, iter, [con])
Splits a collection into sets, grouped by the result
of Jter.

_.groupBy([1.3, 2.1, 2.4], function(x) { return Math.floor(x); }) - { 1:
[1.3], 2: [2.1, 2.4] }

toArray (list) size (list) shuffle (list)

Array Functions

(will also work on the arguments object)

first (array, [n]) head

Returns first (first 77) element(s) of an array.

initial (array, [n])

Returns a copy of an array excluding last (last 7)
element(s).

last (array, [n])
Returns last (last 77) element(s) from an array.

rest (array, [n]) tail

Returns a copy of an array excluding first (first 7)
element(s).

compact (array)

Returns a copy of the array with all falsy (0, false,
null, undefined, ", NaN) values removed.

flatten (array)

Flattens a nested array.
_flatten((1, 2, [[3], 4I) ~ [1, 2, 3, 4]

without (array, [*values])
Copy of the array with all passed values removed.~

union ([*arrays])
intersection ([*arrays])
difference (array, other)

unique (array, [isSorted], [iter])
Produces a duplicate-free version of the array.===

uniq

indexOf (array, value, [isSorted])

Returns the index at which value can be found in
the array, or -1 if value is not present.

lastIndexOf (array, value)

Returns the index of the last occurrence of value in
the array, or -1 if value is not present.

zip ([*arrays])
Merges together the values of each of the arrays
with the values at the corresponding position.
_zip(la, v, 'cl, 11, 2, 31, ['x, Y, '2)
[ra, 1,1, ['b, 2,1 ['c, 3,'27]

range ([start], stop, [step])

Returns a list of integers from start to stop,
incremented (or decremented) by step, exclusive.
_.range(10)
[0,1,2,3,4,56,78, 9]
_.range(1, 11)
1,2,3,4,56,789,10]
_.range(0, 30, 5)
[0, 5,10, 15, 20, 25]
_.range(0, -10, -1)
[0, -1,-2,-3, -4, -5, -6, -7, -8, -9]
_.range(0)
]

Function :-) Functions

bind (func, obj, [*args])

Bind a function to an object, meaning that
whenever the function is called, the value of this
will be the object. Optionally, bind arguments to
the function to pre-fill them, also known as
currying.

bindAll (func, [*methodNames])

Binds a number of methods on the object, specified
by methodNames, to be run in the context of that
object whenever they are invoked. If no
methodNames are provided, all of the object's
function properties will be bound to it.

memoize (func, [hashFunction])

Memoizes a given function by caching the
computed result. If passed an optional
hashFunction, it will be used to compute the hash
key for storing the result, based on the arguments
to the original function. The default hashFunction
just uses the first argument to the memoized
function as the key.

delay (func, wait, [*args])

defer (func)

Defers invoking the function until the current call
stack has cleared, similar to using setTimeout with
a delay of 0.

throttle (func, wait)

Returns a throttled version of the function, that,
when invoked repeatedly, will only actually call the
wrapped function at most once per every wait
milliseconds.

debounce (func, wait)

Repeated calls to a debounced function will
postpone it's execution until after wasit milliseconds
have elapsed.

once (func)

Creates a version of the function that can only be
called one time. Repeated calls to the modified
function will have no effect, returning the value
from the original call.

after (count, func)

Creates a version of the function that will only be
run after first being called count times.

wrap (func, wrapper)

Wraps the first function inside of the wrapper
function, passing it as the first argument.

compose (*functions)

Returns the composition of a list of functions,
where each function consumes the return value of
the function that follows. In math terms, composing
the functions 7), g0, and A produces fg(h)).

Object Functions

keys (object)
Retrieve all the names of the object’s properties.

values (object)
Return all of the values of the object’s properties.

functions (object)

Returns a sorted list of the names of every method
in an object.

methods

extend (destination, *sources)

Copy all of the properties in the source objects
over to the destination object.

defaults (object, *defaults)

Fill in missing properties in object with default
values from the defaults objects. As soon as the
property is filled, further defaults will have no
effect.

clone (object)

Create a shallow-copied clone of the object. Any
nested objects or arrays will be copied by
reference, not duplicated.

tap (object, interceptor)
Invokes interceptor with the object, and then
returns object. The primary purpose of this method
is to "tap into" a method chain, in order to perform
operations on intermediate results within the chain.
_([1,2,3,200)).chain().
select(function(x) { return x%2 == 0; }).
tap(console.log).
map(function(x) { return x*x }).
value();
[2, 200]
[4, 40000]

isEqual (object, other)

Performs an optimized deep comparison between
the two objects, to determine if they should be
considered equal.

iISEmpty (object)
Returns true if object contains no values.
_isEmpty() ~ zrwe

isElement (object)
Returns true if object is a DOM element.

iSArray (object) iSArguments (object)

isFunction (object) ISRegEXp (object)

isString (object)
isBoolean (object)

isNumber (object)

isDate (object)
isSNull (object) isUndefined (object)
isUndefined (object)

Utility Functions

noConflict ()

Give control of the "_" variable back to its previous
owner. Returns a reference to the Underscore
object.

identity (value)

Returns the same value that is used as the
argument. Used as default iterator.

mixin (object)
Allows you to extend Underscore with your own
utility functions.

uniqueld ([prefix])

Generate a globally-unique id for client-side
models or DOM elements that need one.

template (templateString, [con])

Compiles JavaScript templates into functions that
can be evaluated for rendering.

Chaining

chain ¢

Returns a wrapped object. Calling methods on this
object will continue to return wrapped objects until
value is used.
var | = [{n : 'sam’, age :
vary = _(list).chain()
.sortBy(function(s){ return s.age; })
.map(function(s){ return s.n + ' is
first()
.value();
“moe is 21"

25}, {n : 'moe’, age : 21}];

' + s.age; })

value ()

Extracts the value of a wrapped object.
_(obj).value()

Underscore.js Cheatsheet

Example

example (arguments)

con: context forced for an iterator
some_code_examples(); _.size([1, 1]) ~ 2

A bit of description.

= /s used for test equality

alias

